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Asialo-Gmui-ganglioside or gangliotetraosylceramide 1 was reported to be present as a
raterythrocyte antigen and as a mouse natural killer cell marker [2]. Antibodies directed
to asialo-Gmi-ganglioside have been used to detect acute lymphatic leukemia cells [2].
The structure of 1 was determined by partial degradation and methylation analysis [3-5].
Asialo-Gmz-ganglioside or gangliotriaosylceramide 24 has been isolated from the brain
of a Tay-Sachs patient [2], guinea pig erythrocytes [6], mouse Kirsten tumor [7], and rat
hepatoma [8].

Due to their functions as tumor-associated markers, three independent approaches to
the synthesis of the glycan part of asialo-Gu- and asialo-Gua-ganglioside have recently
been reported [9-11]. We describe here the first total synthesis of asialo-Gw- and asialo-
Gmz-ganglioside 24 in a regio- and stereocontrolled way. A synthetic plan was designed
(Fig. 1), according to a retrosynthetic analysis which gave rise to the two key intermedia-
tes 3and 4 for the synthesis of asialo-Gmi-ganglioside. Since the glycosyl acceptor 4 was
readily obtainable via 5 [12], the route to the glycosyl donor 3 (and22) was developed as
follows.

Benzyl penta-O-benzyl-G-D-lactoside 6 [13] was selectively benzylated by the stannyl
method [1416] to give an 89% yield of benzyl hexa-O-benzyl-3-D-lactoside 7 (Fig. 2), [a|p

*Part 35 in the series "Synthetic Studies on Cell-surface Glycans”, for part 34, see ref. 1.
*Author for correspondence

Nomenclature: Asialo-Gmi-ganglioside, gangiiotetraosylceramide (GgOsesCer), Galg1-3GalNAcB1-4Galg1-4
GlcCer; asialo-Gua-ganglioside, gangliotriaosylceramide (GgOsesCer), GaINAcB1-4Gal31-4GlcCer.
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Figure 1. Key intermediates in the synthesis of asialo-Gmi-ganglioside. Abbreviation: Bz, benzoyl.

+22.1° (c 0525), Rr 073 in toluene/EtOAc, 2/1 by vol. Values of [a]p were measured for,
CHClI; solutions at 25°C unless noted otherwise. Compounds having {«]p recorded
gave satisfactory data for elemental analyses. Glycosylation of 7 with 34 6-tri-O-acetyl-2-
deoxy-2-phthalimido-g-D-galactopyranosyl bromide 8 [17] in the presence of AgOSO.-
CF; and molecular sieves 4 A in CI(CH,),Cl at 20°C afforded an 80% yield of the trisac-
charide 9, [o]p +2.3° (c 0.70), Rr 048 in toluene/EtOAC, 3/1 by vol. The conversion of 9 into
10, [a]p +9.3° (c 0.15), Rr 0.50 in toluene/EtOAc, 1/1 by vol, was achieved in 3 steps in 91%
overall yield; (i) NaOMe-MeOH, (ii) n-BuNH»-MeOH under reflux, (iii) Ac2O-pyridine.
Deacetylation of 10 gave 11, [a]p +94° (c 0.15), Ry 047 in CHCls/MeOH, 19/1 by vol, which
was converted in 94% yield into the benzylidene derivative 12, [a]p +28.2° (c0.17), Re 048
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Figure 2. Synthesis of asialo-Gui-ganglioside key intermediate. Abbreviations: Bn, benzyl; Phth, phthallyl.

in toluene/EtOAC, 1/2 by vol, by treatment with CsHsCH(OMe). and p-toluenesulfonic
acid in CH3CN at 20°C. The glycosylation of 12 with acetobromogalactose 14 in the pre-
sence of Hg(CN), and molecular sieves 4 A in benzene/nitromethane, 111 by vol, at 60°C
gave the tetrasaccharide derivative 15, [a]p +477° (c 017), R 0.54 in toluene/EtOAc, 1/1 by
vol, in 97% yield. The structure of 15 was deduced from the reaction sequence and con-
firmed by the transformation into free tetrasaccharide 19 in 3 steps. Debenzylidenation
of 15in 80% aqueous AcCOH at80°C gave 16, [a]p +22.7° (c075), R¢0.29 in toluene/EtOAc,
1/2 by vol. Deacetylation of 16 with NaOMe in MeOH and subsequent hydrogenolysis
with 10% Pd-C in AcOH afforded a 60% yield of 19, [a]p +214° (c0.28 in H;0), Rr 0.20 in
n-BuOH/EtOH/H, 0, 2/2/1 by vol. The 400 MHz TH-NMR (in 2H,0 at 25°C) of 19 contained
the signals at 6 5.217 (d, / 2.9 Hz, H-1a), 4693 (d, / 8.5 Hz, H-1aB), 4665 (d, / 8.5 Hz, H-1c),
4444 (d, ) 76 Hz, H-1b and H-1d), 4152 (bs, H-4c), and 4.118 (bs, H-4b), in good agreement
with the assigned stereochemistry.

Catalytic hydrogenolysis of 16 over 10% Pd-C in AcOH at 80°C gave 17, R¢0.38 in n-BuOH/
EtOH/H0, 2/1/1 by vol, which was acetylated with AczO and pyridine to give peracetylat-
ed tetrasaccharide 18, Rr 0.38 in EtOAc. Chemoselective deacetylation at the anomeric
position of 18 to give 20, [a]p +24.5° (c 0.67), Rr 0.34 in EtOAc, was effected in 75% yield
by treatment with NH2NHz-AcOH [18]. Treatment of 20 with NaH and CI3CCN as de-
scribed by Schmidt et al. [19, 20] afforded a 52% yield of the desired glycosyl donor 3
Rr 0.50 in EtOAc, 8H (C*HCl3): 648 (d, / 48 Hz, H-1a), and 864 (s, C=NH).
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The glycotriosyl donor 22, Rg 045 in toluene/EtOAc, 1/2 by vol, éH (C*HCls): 647 (d, } 50
Hz, H-1a) and 864 (bs, C=NH), 8C (C*MCls): 930 (C-1a), 986 (C-1b) and 101.0 (C-1c), for the
synthesis of asialo-GM;-ganglioside was also prepared via 21 in a straightforward way
from 10 in 4 steps, (i) 10% Pd-C, H,, (ii) Ac2O-pyridine, (i) NH:NH2-AcOH, and (iv) NaH-
CI;CCN (Fig. 3).
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Figure 3. Final stages in the synthesis of asialo-Gua-ganglioside. Abbreviation: Bz, benzoyl.

Having prepared the key glycosyl donors 3and 22, the crucial glycosylations with the ac-
ceptor 4 were now examined. The treatment of 4 with the glycosyl donor 22 in the pre-
sence of BF3-EtzO and molecular sieves AW-300 afforded a 38% yield of the fully protect-
ed asialo-GM.-ganglioside 23, [a]p +2.6° (c 141), Rr 066 in toluene/EtOAc, 1/2 by vol. Dea-
cylation of 23 with MeONa in MeOH-tetrahydrofuran afforded a 70% yield of asialo-
Gmz-ganglioside 24, [«]p -2.8° (c 0.50, CHCl3/MeOH, 1/1 by vol), Re 062 in n-BuOH/EtOH/
H.0, 2/1/1 by vol. The synthetic asialo-Gumz-ganglioside had 'H-NMR data identical with
the natural compound [21]. By employing the same reaction sequence, the glycosyl do-
nor 3 afforded a 15% yield of the desired asialo-Gmi-ganglioside 1, [a]p +2.5° (c 0.25,
CHCIl3/MeOH, 111 by vol), Rr 058 in n-BuOH/EtOH/H,O, 2/1/1 by vol, via the fully protect-
ed asialo-Gmi-ganglioside intermediate 2, [a]p +7.9° (c 0.67), Rr 040 in EtOAc/toluene, 4/1
by vol. Again the identity between the synthetic asialo-Gm;-ganglioside and the natural
sample was confirmed by the comparison of their "H-NMR data in *He-dimethylsul-
foxide-H,0 [22].

In conclusion, an unambiguous synthesis of both asialo-Gui-ganglioside 1 and asialo-
Gmz-ganglioside 24 was achieved by using the trichloracetimidates 3 and 22 as the key
glycosyl donors.
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